
A preliminary study of open-source IoT development
frameworks

Zeineb Baba-Cheikh
École de technologie supérieure

Montreal, Canada

Ghizlane El-Boussaidi
École de technologie supérieure

Montreal, Canada

Julien Gascon-Samson
École de technologie supérieure

Montreal, Canada

Hafedh Mili
Université du Québec à Montréal

Montreal, Canada

Yann-Gael Guéhéneuc
Concordia University
Montreal, Canada

ABSTRACT
The Internet of Things (IoT) market is growing fast with an in-
creasing number of connected devices. This led many software
companies to shift their focus to develop and provide IoT solutions.
IoT development has its own challenges as typical IoT solutions
are composed of heterogeneous devices, protocols and software. To
cope with these challenges, many frameworks are available to help
developers to build IoT applications. Some of these frameworks are
open source and might be of great interest for small and medium-
sized companies wishing to build IoT solutions at a lower cost. In
this paper, we present the results of a preliminary study of four
open source IoT development frameworks. In particular, we used
these frameworks to implement a sample of three IoT applications
and we analyze them against a minimal set of IoT requirements.
We focus in our study on the IoT development for Raspberry PI as
it is a very low-cost and popular platform.

KEYWORDS
Internet of Things, open-source IoT development frameworks, IoT
applications, Raspberry Pi
ACM Reference Format:
Zeineb Baba-Cheikh, Ghizlane El-Boussaidi, Julien Gascon-Samson, Hafedh
Mili, and Yann-Gael Guéhéneuc. 2020. A preliminary study of open-source
IoT development frameworks. In IEEE/ACM 42nd International Conference
on Software Engineering Workshops (ICSEW’20), May 23–29, 2020, Seoul, Re-
public of Korea. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3387940.3392198

1 INTRODUCTION
The Internet of Things (IoT) is a network that interconnects a
plethora of physical devices [2]. These devices typically fall un-
der two categories: sensors, which collect data from the physical
world, and actuators, which perform actions to alter the state of the
physical world. The IoT landscape has grown at a considerable rate
over the past few years. According to recent industrial studies and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7963-2/20/05. . . $15.00
https://doi.org/10.1145/3387940.3392198

reports, 20,6 billion devices are now connected [3] and 5 quintil-
lions bytes of data are produced daily by IoT devices [15]. This led
software companies to shift their focus to building IoT solutions.

Unlike traditional software applications which rely on traditional
computing infrastructures (e.g., cloud, servers, desktop and laptop
computers), IoT applications rely on devices that are widely het-
erogeneous. For instance, devices on the low end of the spectrum
are made of simple micro-controllers, while higher-end devices
(e.g., Raspberry Pi, Beaglebone) can have multi-core processors,
several gigabytes of memory and can execute full operating sys-
tems. Similarly, the IoT ecosystem also features a high heterogeneity
of applications that span across several application domains and
industries. This drives the need for approriate software develop-
ment tools, practises and frameworks that can efficiently cope with
the software and hardware diversity of the devices and applica-
tion domains. To bridge the gap, various software development
frameworks have been proposed, many of which are open-source.
However, they target different goals and application domains, and
they provide different support for developing IoT aplications. De-
termining which framework to use for designing and implementing
a given IoT application may be challenging.

This paper presents the results of a preliminary study of IoT
development frameworks. In particular, we studied a sample of four
open-source IoT frameworks (i.e. Eclipse Vorto [18], ThingML [4],
Node-RED [11] and OpenHab [12]). We used these frameworks to
implement a selection of three IoT applications spanning different
domains. We also compared the four frameworks against a set
of criteria corresponding to a minimal set of requirements of IoT
applications.

The paper is structured as follows. Section 2 discusses related
work. We describe the design of the study in Section 3. Section
4 summarizes the work achieved to implement each application
using each framework while Section 5 presents the results of our
analysis of the frameworks. We conclude in Section 6.

2 RELATEDWORK
There are several studies that survey IoT platforms and frameworks.
[13] proposes a general methodology to classify various functional
and non-functional requirements of IoT applications and devices,
as well as a taxonomy to classify IoT frameworks. Whereas other
works (e.g. [8], [14] and [19]) focus on the deployment aspect of
IoT applications (e.g. cloud and service based). [8] provides a set
of criteria (i.e. functional, non-functional and business-related) for
selecting a cloud platform, and succinctly compares IoT platforms

https://doi.org/10.1145/3387940.3392198
https://doi.org/10.1145/3387940.3392198
https://doi.org/10.1145/3387940.3392198

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Baba-Cheikh and El-Boussaidi, et al.

for a subset of the criteria. Similarly, [14] surveys a selection of
the main cloud-based IoT platforms, and proposes a methodology
to assist in selecting the most suitable platform for a given use
case. [19] surveys a set of 9 generic frameworks, and outlines their
capabilities along four different dimensions: data storage in the
cloud, the availability of a REST service, live logging and security.

Other works (e.g. [16], [10] and [5]) present more general studies.
[16] presents a holistic survey of different IoT platforms, commu-
nication technologies and applications, and presents an outline of
the main architectural components of the IoT landscape (i.e., edge,
fog, cloud layers). Similarly, [10] provides a definition of the main
components of an IoT platform, surveys popular communication
protocols used in the IoT landscape, discusses factors that should be
considered for selecting an IoT platform, and provides a summary
comparison of 20 platforms against few high-level criteria. [5] pro-
vides a methodology to analyse the suitability of a large amount
(63) of IoT frameworks, for several criteria along the different di-
mensions of the IoT application development lifecycle (e.g., design,
modelling, implementation, test, deployment)

In contrast to the works listed above, our study focus on the
software development frameworks; we study tools that help imple-
ment and deploy software on devices. Moreover, our work provides
a thorough and practical study; while we chose to evaluate a lim-
ited set of open-source IoT frameworks, we implemented three
applications that model representative use cases from IoT applica-
tions using each of the studied frameworks, and we evaluate the
frameworks over these applications and a curated set of criteria.

3 DESIGN OF THE STUDY
The goal of this preliminary study is to investigate the support
provided by open source frameworks to develop IoT applications.
In particular, our study aims to answer the following research
question:

• To what extent do open source frameworks support a mini-
mum set of IoT application requirements?

To answer this question, we selected some IoT development
frameworks and used them to implement and deploy examples
of IoT applications. For the deployment of these applications, we
targeted the Raspberry Pi as it is one of the most popular and low-
cost platforms. To cover a wide spectrum of IoT applications, we
studied different IoT applications from the literature (e.g. [17])
and their classifications (e.g. [20], [10]). At a very high-level, we
identified three categories of applications and we implemented
one application of each category using each of the frameworks. To
systematically evaluate the studied frameworks, we identified a set
of criteria that is based on a minimum set of features needed to
implement IoT applications.

3.1 Studied IoT development frameworks
For this preliminary study, we selected a sample of four open-
source IoT development frameworks, namely Eclipse Vorto [18],
ThingML [4], OpenHab [12] and Node-RED [11]. Except for Node-
RED, these frameworks are all based on the Eclipse development
environment. Initially, we focused our study on frameworks that
were part of the Eclipse IoT project, i.e. Eclipse Vorto and OpenHab.
To diversify the studied frameworks, we also studied ThingML

which is an Eclipse plugin and Node-RED which is a very popular
programming tool that makes it easy to wire hardware devices.
Each of these frameworks is described in more details in Section 4.
We used version v0.10.0 M6 of Vorto, version v1.0.0.4 of ThingML,
version v0.19.5 of Node-RED and version 2.4 of OpenHab.

3.2 Identification of a sample of IoT
applications

To experiment on a representative sample of IoT applications, we
rely on the basic classification of existing IoT applications that was
introduced in [20]. Thus, based on their complexity, we distinguish
between three categories of IoT applications:

• Tracking devices: These applications aim at localizing de-
vices through some identification and tracking technology
(e.g. RFID tags). The goal is to efficiently manage the tracked
devices which can be equipment parts, assets or products. A
typical example of such applications is the inventory man-
agement of a store’s products.

• Monitoring the real-time states of devices: Such applica-
tions enable monitoring the status of some device. Typical
examples of such applications include weather monitoring
systems and traffic monitoring systems. These applications
rely on various sensors (e.g. thermometer, camera, GPS) to
capture the status of the monitored devices.

• Controlling states of devices: An application of this category
captures the state of some device and makes decisions to
act on it (or on other devices) accordingly. Thus, these appli-
cations use various sensors to monitor the state of devices
but they also use actuators to turn the decisions made into
physical actions (e.g. turn on a heater, move a piston, etc.).
A simple example of such applications is a smart heating
system.

We choose to implement an application of each category using each
of the studied frameworks. Table 1 lists the examples of applications
we choose for each category.

Category Selected example
Tracking devices inventory management system
Monitoring the real-time
states of devices

Weather monitoring system

Controlling states of de-
vices

Smart heating system

Table 1: Categories and corresponding selected IoT applica-
tions

3.3 Deployment platform: Raspberry Pi
For our study, we used the Raspberry Pi platform [7] which is
a low-cost device with computing capabilities. The Raspberry Pi
has been commonly used to learn programming and design and
build various applications. Mainly, Raspberry Pi has been used in
home automation, automated traffic signalling, surveillance, smart
agriculture, etc. The Raspberry Pi can be seen as a computer that
runs an operating system and provides a set of pins to interface

A preliminary study of open-source IoT development frameworks ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

with other devices. These pins are called GPIO (general purpose
input/output) pins. The GPIO pins are the means to control and
interact with IoT devices.

Several Raspberry Pi models were released by the Raspberry
Pi foundation [6]. We used the Raspberry Pi 3 model B+ for our
experiments. The model B+ is a 64-bit quad-core processor running
at 1.4GHz. It also has 1GB LPDDR2 SDRAM, 40 GPIO pins and 4 USB
2.0 ports. To implement the three examples of applications in our
sample, we used additional devices. For the inventory management
system, we used RFID tags and an RFID tag reader to identify and
track objects. The tag reader was plugged into the Raspberry Pi
via a USB port (see Figure 1.a). For the weather monitoring system,
we used a basic temperature and humidity sensor. Specifically we
used the DHT11 sensor which is a popular and very cheap sensor
that can be easily connected to the Raspberry Pi (see Figure 1.b).
The sampling rate for the DHT11 is 1Hz, i.e. the sensor performs
a reading every second. For the smart heating system (Figure 1.c),
we used the DHT11 sensor to monitor the temperature, and a LED
to simulate the heater; i.e., the led is switched on or off depending
on the difference between the ambient temperature (detected by
the sensor) and the targeted one.

3.4 Criteria of analysis
We used a set of criteria to analyze the support provided by the
studied IoT development frameworks to build IoT applications. To
define these criteria, we proceeded in two steps. First, we surveyed
a number of works discussing IoT applications (e.g. [10], [20]) and
we identified an initial list of features that must be provided by
the frameworks to ease the implementation of IoT applications.
Second, we studied the ISO IoT-RA standard [2] which provides a
standardized IoT reference architecture and discusses IoT industry
best practices. We complemented our initial list of features through
the analysis of the ISO IoT-RA.We focused on features related to the
software development activities. The identified features include: 1)
the support provided to specify the application’s functions (i.e. spec-
ification of the connected devices), 2) the support provided for non
functional requirements (e.g. security, fault tolerance, heterogeneity
management), 3) the support for analysis of IoT applications (e.g.,
visualization, simulation), and 4) the support for complete code
production.

Thus, the final set of criteria that we used in our study includes:

• Specification of the interface of the device: The ability of the
framework to support the developer in defining the inputs
/outputs of a device.

• Specification of the behavior of the device: The ability of
the framework to support the developer in modeling the
behavior of a device.

• Specification of the properties of the device: The ability of the
framework to support the developer in defining the hardware
characteristics of a device (e.g. memory).

• Security: The support provided by framework to the devel-
oper to build secure applications. In particular, we focus
on common security concerns, namely authentication, data
encryption, and data integrity.

• Heterogeneity management: The ability to build systems of
heterogeneous connected devices.

• Fault Tolerance: This refers to the ability of the framework
to: 1) support the specifications of errors, and 2) enable their
detection during the execution of the application.

• Integration of COTS components: The ability of the frame-
work to support the integration of components available on
public repositories (e.g. Eclipse Marketplace).

• Discoverability: The ability to ease the addition of new de-
vices or services to an exiting IoT application; i.e. to support
the identification and description of a new device in a way
that it can be discovered by existing ones.

• Complete code production: The ability to support the pro-
duction of a complete code that is ready to run.

• Data storage: The ability of the framework to support data
storage (e.g. captured values, logs of errors).

• Visualization: The ability of the framework to support the
visualization of the connected devices, i.e. displaying the
states of the devices or the data exchanged between devices.

• Simulation: The ability of the framework to simulate the
operation of the IoT application in order to evaluate the
application against its requirements.

Since we are using the Raspberry Pi as a target platform, we defined
two additional criteria related to the deployment and execution of
the source code generated by the framework on the Pi:

• Easy deployment on the Raspberry Pi: The ability to easily
deploy the code developed using a framework on the Pi.

• Execution on the Raspberry Pi: The ability to execute the
code on the Pi.

4 STUDY EXECUTION
In this section we briefly introduce each of the studied frameworks
and we summarize the work achieved to implement each of the IoT
applications using each of the frameworks.

4.1 Eclipse Vorto
4.1.1 Overview. Eclipse Vorto [18] is an open source project that
is part of the Eclipse IoT project. The goal of Vorto is to provide
support for developers to: 1) describe device capabilities, 2) share
devices descriptions through a common repository, and 3) use these
descriptions to integrate them with various IoT platforms.

To describe devices, Vorto relies on its own DSL (domain-specific
language) which was developed based on other programming lan-
guages like Java. Vorto DSL specifies the capabilities and function-
ality of a device as an Information Model. An Information Model
is composed of a set of abstract and technology-agnostic Function
Blocks. Information models can be shared with other the Vorto
community through the Vorto Repository. Vorto relies on some
code generators to generate the application code from the Informa-
tion model. The developer may choose one of the available code
generators (e.g. Bosch IoT suite, Eclipse Ditto) depending on the
target platform. The Vorto version we used for this study (i.e, Vorto
v0.10.0 M6) didn’t support complete code generation.

4.1.2 Implementation of our sample of IoT applications. We imple-
mented the three examples of IoT applications using Vorto. Their
implementation was similar; i.e. we used Vorto’s DSL to describe
the information model and function blocks for each of the devices

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Baba-Cheikh and El-Boussaidi, et al.

Figure 1: Experimental setup

Figure 2: Information model of DHT11 sensor

Figure 3: FunctionBlock of DHT11 sensor

of each application, and we generated the Java code of each appli-
cation using one of the generators provided by Vorto. For instance,
to implement the weather monitoring system, we described the
DHT11 sensor using an information model displayed by Figure 2
and its ability to sense temperature as a function block displayed by
Figure 3. The function block defines a number of properties of the
sensor as part of its status; e.g. the property sensorValue describing
the current value captured by the sensor, the properties minMea-
suredValue and maxMeasuredValue corresponding, respectively,
to the lowest and the highest captured values, the properties min-
RangeValue and maxRangeValue defining the temperature Range
of the DHT11, and the property sensorUnit describing the tem-
perature unit. Since the generated code is incomplete (i.e. only a
skeleton is generated), it needed to be completed manually before
deployment and execution on the Pi.

4.2 ThingML
4.2.1 Overview. ThingML [4] is an Eclipse plug-in that targets
the design and implementation of distributed reactive systems.
ThingML is mainly intended for devices with limited resources.
ThingML relies on a DSL that combines variousmodeling constructs
including statecharts, components and a platform-independent ac-
tion language. The DSL enables to specify the architecture of the
IoT application in terms of communicating devices, and to model
the complete behavior of the devices using statecharts and the ac-
tion language. ThingML also supports the integration of legacy
components as black boxes.

Figure 4: Specification of the tag reader using ThingML

The DSL of ThingML relies on two key structures [9]: things
and configurations. The thing is the implementation unit that de-
scribes devices. The specification of a thing may include properties,
functions, messages, ports and state machines. Both properties and
functions are local to a thing. Ports can send and receive messages,
they represent the public interface of a thing. Configurations de-
scribe the connection between things through their ports. ThingML
provides a code generation framework including a set of compilers
targeting different languages (e.g. Java, C/C++). The generated code
is complete and ready to be compiled and executed on the target
platform.

4.2.2 Implementation of the inventory management system. Using
ThingML’s DSL, we created a Thing named ReaderTag (see left side
of Figure 4). We also had to implement a C function that listens to
the USB port to which the tag reader is connected, and grabs data
when a tag is detected by the reader. Data returned by this function
is processed and displayed on the Raspberry Pi command line. The
behavior of the tag reader is specified as a state machine using
ThingML’s DSL (see right side of Figure 4). Initially, the ReaderTag
thing is in the "Ready" state. It transitions to the "Reading" state
when a Tag ID is read.

4.2.3 Implementation of the weather monitoring system. For the
application example of the second category, we created a thing
"SenseC" representing the DHT11 sensor (Figure 5). The DHT11
thing uses a timer to control the frequency of measuring the tem-
perature and humidity. We also had to develop a C function that
reads the measured temperature and humidity values from the
GPIO pins of the Raspberry Pi. The behavior of the sensor is spec-
ified as a state machine "PiSenceC" whose diagram is shown in
Figure 6. The sensor thing starts the timer and it initially enters the
"Sensing" state. When the timer’s time is out, the sensor measures

A preliminary study of open-source IoT development frameworks ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

Figure 5: Specification of DHT11 sensor using ThingML

Figure 6: State machine of the DHT11

the temperature and humidity, restarts the timer and transitions
back to the "Sensing" state. If the DHT11 sensor could not carry
out the measurement, the thing transits to an "error" state. Using
the ThingML specification of the DHT11 behavior, we generated
the C executable code of the application that we deployed and exe-
cuted on the Raspberry platform. The results of the sensing were
displayed on the Raspberry command line.

4.2.4 Implementation of the smart heater system. For the applica-
tion example of the third category, we used the same DHT11 thing
specification that we defined for the previous example. The only
difference is that the measured temperature is no more displayed
on the command line. Instead, the temperature value is sent to
another thing that represents the heater device. Thus, we created
a "Heater" thing and we described its behavior as a state machine
shown in Figure 7. The heater is initially in the "Stop" state. The
measured temperature received from the DHT11 is compared to a
threshold temperature. If the current temperature is less than the
threshold temperature, the heater is turned on and it transitions
to the "heating" state through the "activate" transition. Otherwise,

Figure 7: State machine of the Heater

it remains in the "Stop" state. When the heater is in the "heating"
state and the temperature is greater than the threshold, the heater
is turned off and it transitions to the "Stop" state through the "deac-
tivate" transition. Using the specifications of the DHT11 and the
heater, we generated the code of our application and we deployed
and executed the code on the Raspberry Pi.

4.3 Node-RED
4.3.1 Overview. Node-RED [11] is a Flow-based programming tool.
It allows the interconnection of devices, APIs, cloud environments
and online services. Node-RED’s flow editor is accessible through
a web browser interface and consists of 3 parts:

• The palette: it provides a set of nodes that are the basic
building blocks for creating flows.

• The work environment: the work space where users can
create their flows.

• The sidebar: which may be used to display various informa-
tion; e.g. information about nodes, output and debugging
information.

In order to design the flow diagram, one must drag and drop the
nodes from the palette to the work environment, then wire them
to create the data flow. The nodes are developed in JavaScript and
saved in JSON format. By default, there is a set of predefined nodes;
additional nodes can be easily downloaded. The palette nodes are
also extensible, developers can create and save their own nodes. In
fact, Node-RED has a very active community with a plethora of
nodes having been developed for different devices and purposes. A
notable node is the "Function" node, which allows for programming
a given behavior directly using JavaScript code through the GUI.

4.3.2 Implementation of the inventory management system. We
followed the steps described in [1] to implement the inventory
management example using Node-RED. To be able to read from the
tag reader, we needed first to register it with its vendor and device
IDs. To do so, we used the getHIDdevice node. We then created the
flow for parsing the readings of the tag reader (Figure 8). To do so,
we used the HIDdevice nodewhichwas fed the values of the vendor
and device IDs of the tag reader. The HIDdevice node reads the
information received from the RFID reader through the Raspberry

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Baba-Cheikh and El-Boussaidi, et al.

Figure 8: The flow for parsing the readings of the tag reader

Figure 9: The flow of the weather monitoring system

USB port. The byte arrays produced by the HIDdevice node need
to be processed in order to retrieve the tag IDs. This processing
includes selecting only the part of the byte array containing the ID,
eliminating empty lines and line breaks, translating bytes to real
digits and merging the resulting digits into one ID.

4.3.3 Implementation of the weather monitoring system. Node-RED
includes ready-to-use nodes for the Raspberry Pi to communicate
with sensors and peripherals. We use the DHT11 node to imple-
ment our weather monitoring system (figure 9). The DHT11 node
performs a single reading of the temperature and humidity values.
The captured values are then saved to a file. We graphically display
each value on a gauge using existing graphic nodes.

4.3.4 Implementation of the smart heater system. In this applica-
tion, we compare the temperature measured using the DHT11 node
against a predefined threshold. To do so, we used a function node to
convert the temperature data obtained from the DHT11 node from
a "string" type to a "real" type. We also implemented a decision
function node (in JavaScript), which compares the two tempera-
ture values, and enables/disables a LED if the heater should be
activated/deactivated.

4.4 OpenHab
4.4.1 Overview. OpenHab (Open Home Automation Bus) [12] is an
open source software framework for smart home. The framework
runs on several platforms (i.e. Linux, Windows and MacOS) and
several hardware including the Raspberry Pis. A key feature of

OpenHab is its ability to integrate a multitude of smart devices into
a single application. OpenHab also explicitly distinguishes between
two views of an IoT system: the physical view which represents
the devices and their connections, and the logical view which cor-
responds to the information representing devices and connections
in the application. The framework also features a lightweight rule
engine that executes the application automation processes.

To use OpenHab for creating a smart home application, the
developer needs to:

• Define things and corresponding channels and items. A thing
is a software representation of a device or a service. It exposes
its functions through channels. Items represent functionality
(user interfaces and automation logic) that is used by the
application. Things are part of the physical view while items
are part of the logical view (also called the virtual layer).
Channels are linked to items, and these links are what estab-
lishes the relation between the virtual layer (i.e. items) and
the physical layer (i.e. things). A link connects one channel
to one item, but a channel may be linked to several items
and vice versa. A thing reacts to events sent to items linked
to its Channels, and it sends events to these items.

• Search the OpenHab addons for each smart device that is
part of the application and install the bindings for each de-
vice; a binding is an OpenHAB component that enables the
interaction with a device. In particular, the bindings establish
the connections between devices and things.

• Define the sitemap of the application; a sitemap is the Open-
HAB generated user interface that presents information and
allows for interactions.

• Define rules; a rule is used for automating processes. A rule
defines a triggering condition (e.g. an item whose status has
changed) and the logic (i.e. a script) that should be executed
when the condition is met.

4.4.2 Implementation of the inventory management system. We
were not able to implement this application. This is due to the
protocol used by the RFID reader (USB communication) that is not
supported by OpenHab.

4.4.3 Implementation of the weather monitoring system. To imple-
ment this application, we tried two different methods: one that
follows the process described above and another that relies on the
MQTT protocol to retreive the sensors readings. We only describe
the first method in this paper. In this case, we defined a thing for
the DHT11 sensor in a file named DHT11.things and the tempera-
ture and humidity as items. We implemented a Python script that
reads the temperature and humidity values from the DHT11 thing.
We also added the GPIO bindings to let OpenHab read the values
captured by DHT11 through the pins of the Raspberry. Finally, we
created a file sitemap for the UI of our application.

4.4.4 Implementation of the smart heater system. To implement
this application, we first activate the GPIO bindings for OpenHab to
enable the reading and writing through the Raspberry Pi pins. We
specified the pins to which the DHT11 and the LED were plugged
using a python script. We defined two things: one for the DHT11
sensor and one for the LED. We also defined the temperature and
the LED state as items.We implemented a set of rules corresponding

A preliminary study of open-source IoT development frameworks ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

1st category 2nd category 3rd category
Eclipse Vorto

ThingML

Node-RED

OpenHab

: Easy to implement : Somewhat difficult to implement

: Very difficult to implement : Not feasible
Table 2: Support provided by the frameworks for implement-
ing our sample of IoT applications

to the heating process; e.g. if the current temperature is below the
target temperature, the LED turns ON, otherwise it goes to OFF.
Finally, we created a file sitemap for the UI of our application.

5 RESULTS AND DISCUSSION
In this section, we first summarize our findings regarding the ability
of the studied frameworks to support the implementation of each
category of IoT application. We then present and discuss the results
of our study in relation to the research question stated in Section 3.

5.1 Support for the selected IoT applications
Table 2 summarizes the results for each studied framework in terms
of ease/difficulty of implementing each of the three IoT applications
in our sample. Eclipse Vorto does not enable to build a complete
application; i.e. does not support the generation of a complete
code. This is due to the fact that Vorto focuses on integration of
heterogeneous devices. Thus, it provides a DSL to specify devices at
a very high-level. Depending on the target IoT platform, a skeleton
of the source code is generated from the specification of the device
enabling its integration into the platform. For instance, the code
generator Eclipse Ditto generates a skeleton of code to be integrated
into the Eclipse Ditto platform.

Using ThingML, we were able to implement all the three IoT
applications in our sample. However, the three applications required
some amount of effort for implementation. The first category was
very difficult to implement because to the operating mode of the
RFID reader; i.e. we needed to listen to the USB port and display a
tag ID when it is read by the RFID tag reader. However, ThingML
does not support this type of connection. So we had to develop
a C function that reads the RFID tags ID; i.e. we took advantage
of the fact that ThingML enables to integrate platform-specific
code. The third category was also challenging as we had a problem
exchanging information between the two things (i.e. DHT11 and
LED). For all of the three categories, debugging was an issue as the
ThingML IDE does not support platform-specific code debugging.

Node-RED is the framework that required the least efforts and
time for learning and implementing. Both the second and third
category of applications were easy to implement because of the
availability of nodes corresponding to the functions of the devices
included in these applications. However, the first category (i.e. the
inventory management application) was a bit challenging because

of some package dependencies; i.e. the implementation of this ap-
plication required downloading additional packages that caused
compatibility issues with our Node-RED version.

Using OpenHab, we were able to implement the second and the
third category examples (i.e. the wather monitoring and the heating
systems) but not the first category. This was to be expected since
Openhab is a Home automation framework and the second and third
examples are related to the smart home domain. Nevertheless, the
third category was a bit more challenging to implement because of
the number of files we had to put together to realize the application.

5.2 Analysis according to IoT requirements
Table 3 summarizes the results of our analysis of the studied frame-
works according to the criteria defined in Section 3. Looking at
the frameworks, none of them meets all our criteria. In particular,
Eclipe Vorto is the framework that provides the least support to
developers in building IoT applications. This is a bit normal since
Vorto can be seen as an interface description language focusing on
heterogeneity management.

Looking at the criteria, all the frameworks support heterogene-
ity management. This is due to the fact that IoT applications are
typically composed of various devices and components and inter-
operability between these devices is required. Conversely, none of
the frameworks enables the specification of the properties of de-
vices (i.e. hardware characteristics). This is an issue since many IoT
devices may have limited hardware capabilities (i.e. memory and
process) that must be taken into consideration during deployment
but also during the execution of IoT applications. OpenHab and
ThingML are the frameworks that support a complete specification
of the devices in terms of input/output and behavior. Although it is
widely used, Node-RED does not support the specification of the
interface of devices neither their behavior; i.e. not in an explicit
way. In fact, Node-RED focuses on describing the data flow.

Regarding security, most of the frameworks provide some sup-
port. In Eclipse Vorto, the user has to login to the Vorto repository
to gain access to the specification of devices. In Node-RED and
OpenHab, there are APIs or addons that can be downloaded and in-
stalled to ensure controlled access to the things and the application
being developed. Node-RED is the framework that most eases the
implementation of security. For instance, Node-RED provides ex-
plicit nodes to support data-encryption. Regarding fault tolerance,
Node-RED is the only framework that does not support the explicit
specification of errors during the design of the application. On the
other hand, Node-RED and OpenHab are the only frameworks that
support detecting errors during execution; both frameworks pro-
vide means to catch errors and create logs. In addition, Node-RED
and OpenHab support simulation of the application, data visual-
ization and integrating COTS components, which makes the two
frameworks very attractive to developers. As for data storage, both
ThingML, Node-RED and OpenHab makes it possible to persist
data; ThingML requires to manually implement a function to do so.

ThingML, Node-RED and OpenHab enable to produce a com-
plete code. However, ThingML requires the manual implementation
of several platform-specific functions and the deployment of the
resulting code on the Raspberry Pi requires some efforts, whereas

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Baba-Cheikh and El-Boussaidi, et al.

Criteria Eclipse Vorto ThingML Node-RED OpenHab
Specification of the interface of the device ✓ ✓ × ✓
Specification of the behavior of the device × ✓ × ✓
Specification of the properties of the device × × × ×

Security-Authentication ✓ × ✓ ✓
Security-Data Encryption × ✓ ✓ ✓
Security-Data Integrity × ✓ ✓ ×

Heterogeneity management ✓ ✓ ✓ ✓
Fault tolerance-Specification of errors ✓ ✓ × ✓

Fault tolerance-Detection of errors during execution × × ✓ ✓
Integration of COTS components × × ✓ ✓

Discoverability × × × ✓
Complete code production × ✓ ✓ ✓

Data storage × ✓ ✓ ✓
Visualization × × ✓ ✓
Simulation × × ✓ ✓

Easy deployment on the Raspberry Pi × × ✓ ✓
Execution on the Raspberry Pi × ✓ ✓ ✓

Table 3: Evaluation of the studied frameworks according to our criteria

Node-RED andOpenHab both run on the Raspberry Pi whichmakes
it easy to run the resulting code on the Pi.

5.3 Threats to validity
Some limitations of our study are due to the number of applications
we implemented using the studied frameworks and the number of
devices in these applications. To mitigate these threats, we relied
on existing classifications of IoT applications and we implemented
one application for each IoT class. In the future, we plan to extend
the study and implement additional applications with more devices.
Also, the comparison between the studied frameworks may seem
unfair as each framework has a specific goal or targets a specific
domain. Future work includes the study of how these frameworks
may complement each other.

6 CONCLUSION
This paper presents a study on open-source IoT development frame-
works. We selected a sample of four frameworks (Eclispe Vorto,
ThingML, Node-RED and OpenHab) that we used to implement a
sample of three IoT applications covering the different categories
of applications discussed in the literature. We also analyzed the
studied frameworks using a minimal set of requirements that must
be met by IoT applications. The results of our study show that
Node-RED and OpenHab are the frameworks that offer the best
support for developing our sample of applications. A combination
of these two frameworks may offer a more extensive support for IoT
requirements. In fact, Node-RED is now providing a set of nodes to
ease the integration of OpenHab. In the short-term we plan to study
additional frameworks and extend our sample of IoT applications.

REFERENCES
[1] Raphael Binks. 2018. IOT Tutorial: Read RFID-tags with an USB RFID reader,

Raspberry Pi and Node-RED from scratch. https://medium.com/coinmonks/iot-
tutorial-read-tags-from-a-usb-rfid-reader-with-raspberry-pi-and-node-red-
from-scratch-4554836be127

[2] Technical comitee : ISO/IEC JTC 1/SC 41 Internet of Things and related technolo-
gies. 2018-08. ISO/IEC 30141:2018 Internet of Things Reference Architecture.

[3] Ericsson. 2018. Internet of Things forecast.
[4] B. Morin F. Fleurey and O. community. 2016. Thingml source code repository.

https://github.com/sintef-9012/thingml
[5] Mahdi Fahmideh and Didar Zowghi. 2020. An exploration of IoT platform

development. Information Systems 87 (2020).
[6] Raspberry Pi foundation. 2020. Buy a Raspberry Pi. https://www.raspberrypi.org/

products/
[7] Raspberry Pi foundation. 2020. Teach, Learn, and Make with Raspberry Pi. https:

//www.raspberrypi.org/
[8] Pankaj Ganguly. 2016. Selecting the right IoT cloud platform. In 2016 International

Conference on Internet of Things and Applications (IOTA). IEEE, 316–320.
[9] Nicolas Harrand, Franck Fleurey, Brice Morin, and Knut Eilif Husa. 2016.

ThingML: a language and code generation framework for heterogeneous targets.
In Proceedings of the ACM/IEEE 19th International Conference on Model Driven
Engineering Languages and Systems. 125–135.

[10] Hamdan Hejazi, Husam Rajab, Tibor Cinkler, and László Lengyel. 2018. Survey
of platforms for massive IoT. In 2018 IEEE International Conference on Future IoT
Technologies (Future IoT). IEEE, 1–8.

[11] Node-red. 2013. Node-RED: Low-code programming for event-driven applications.
https://nodered.org/

[12] OpenHAB. 2014. openHAB - empowering the smart home. http://
www.openhab.org/

[13] Leila Fatmasari Rahman, Tanir Ozcelebi, and Johan J Lukkien. 2016. Choosing
your IoT programming framework: Architectural aspects. In 2016 IEEE 4th In-
ternational Conference on Future Internet of Things and Cloud (FiCloud). IEEE,
293–300.

[14] Amirfardad Salami and Alireza Yari. 2018. A framework for comparing quantita-
tive and qualitative criteria of IoT platforms. In 2018 4th International Conference
on Web Research (ICWR). IEEE, 34–39.

[15] Tim Stack. 2019. Internet of Things (IoT) Data Continues to Explode Exponentially.
Who Is Using That Data and How? 2018.

[16] Shahab Tayeb, Shahram Latifi, and Yoohwan Kim. 2017. A survey on IoT commu-
nication and computation frameworks: An industrial perspective. In 2017 IEEE
7th Annual Computing and Communication Workshop and Conference. 1–6.

[17] Itorobong S Udoh and Gerald Kotonya. 2018. Developing IoT applications: chal-
lenges and frameworks. IET Cyber-Physical Systems: Theory & Applications 3, 2
(2018), 65–72.

[18] Eclipse Vorto. 2016. Vorto introduction. https://www.eclipse.org/vorto/
documentation/overview/introduction.html

[19] Indunil Withana and Cassim Farook. 2019. IoT Generic Frameworks: What
Needs to Improve. In 2019 7th International Conference on Smart Computing &
Communications (ICSCC). IEEE, 1–5.

[20] Ying Zhang. 2011. Technology framework of the Internet of Things and its
application. In 2011 International Conference on Electrical and Control Engineering.
IEEE, 4109–4112.

https://medium.com/coinmonks/iot-tutorial-read-tags-from-a-usb-rfid-reader-with-raspberry-pi-and-node-red-from-scratch-4554836be127
https://medium.com/coinmonks/iot-tutorial-read-tags-from-a-usb-rfid-reader-with-raspberry-pi-and-node-red-from-scratch-4554836be127
https://medium.com/coinmonks/iot-tutorial-read-tags-from-a-usb-rfid-reader-with-raspberry-pi-and-node-red-from-scratch-4554836be127
https://github.com/sintef-9012/thingml
https://www.raspberrypi.org/products/
https://www.raspberrypi.org/products/
https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://nodered.org/
http://www.openhab.org/
http://www.openhab.org/
https://www.eclipse.org/vorto/documentation/overview/introduction.html
https://www.eclipse.org/vorto/documentation/overview/introduction.html

	Abstract
	1 Introduction
	2 Related Work
	3 Design of the study
	3.1 Studied IoT development frameworks
	3.2 Identification of a sample of IoT applications
	3.3 Deployment platform: Raspberry Pi
	3.4 Criteria of analysis

	4 Study execution
	4.1 Eclipse Vorto
	4.2 ThingML
	4.3 Node-RED
	4.4 OpenHab

	5 Results and discussion
	5.1 Support for the selected IoT applications
	5.2 Analysis according to IoT requirements
	5.3 Threats to validity

	6 Conclusion
	References

